Relation between Interatomic Distances in Transition-Metal Elements, Multiple Bond Distances, and Pseudopotential Orbital Radii

P. Ganguly

Physical Chemistry Division National Chemical Laboratory Pashan Road, Pune 411008, India

Received May 12, 1994
The relationship between the $a b$ initio quantum mechanically calculated Zunger-Cohen pseudopotential orbital radii, ${ }^{1} r_{\mathrm{p}}$, of an atom calculated from the classical turning point and the valence- and coordination-number-dependent ionic radii of cations and anions tabulated by Shannon ${ }^{2}$ has been recently investigated. ${ }^{3}$ A set of radii CR^{-}and CR^{+}corresponding to (singly) charged negative and positive ions was related linearly to $r_{\text {(sp }\rangle}\left(\left(r_{\mathrm{s}}+r_{\mathrm{p}}\right) / 2\right)$. The interatomic distance, $d_{\mathrm{M}-\mathrm{M}}$, in non-transition-metal elements was found ${ }^{3}$ to be given by the sum of CR^{+}and CR^{-}. In general,

$$
\begin{align*}
d_{\mathrm{M}-\mathrm{M}} & =\mathrm{CR}_{l}^{+}+\mathrm{CR}_{l}^{-} \tag{la}\\
& =C_{l} r_{l}+D_{l} \tag{lb}
\end{align*}
$$

where the coefficient C_{1} and the length scale D_{1} have universal values for given l. When $l=\langle\mathrm{sp}\rangle$, Ganguly ${ }^{3}$ found $C_{\text {(sp) }} \sim 4.52$ \AA and $D_{\text {(sp) }} \sim 0.74 \AA$, which is close to the interatomic distance in the hydrogen molecule. It is satisfying to note that the special case of $r_{l}=0$ yields the $\mathrm{H}-\mathrm{H}$ bond distance in the hydrogen molecule (D_{l}).

We have fitted the interatomic distances of non-transitionmetal elements ${ }^{4.5}$ using the nonrelativistic Zunger-Cohen values ${ }^{1}$ for r_{s} and keeping $D_{1}=0.74 \AA$. The relation

$$
\begin{equation*}
\left.d_{\mathrm{M}-\mathrm{M}}=4.74 r_{\mathrm{s}}+0.74 \quad \text { (in } \AA\right) \tag{2}
\end{equation*}
$$

gives the best fit (Figure 1). Only r_{s} may be sufficient for the prediction of interatomic distances to a first approximation. Zhang et al. ${ }^{6}$ have also observed earlier that just r_{s} can give important insight into bonding properties and electronegativity scales. Ganguly ${ }^{3}$ had noted earlier that CR^{-}is close to the van der Waals radii, ${ }^{7}$ rVDW , so that we may use $r_{\text {VDW }}$ to obtain the relation between CR^{-}and r_{s} and subsequently (via eqs 1 and 2) that between CR^{+}and r_{s}. We find from this exercise that

$$
\begin{equation*}
\mathrm{CR}^{+}=2.24 r_{\mathrm{s}}-0.37 \quad \text { (in } \AA \text {) } \tag{3}
\end{equation*}
$$

Multiple bond distances in molecules or elements cannot be obtained in a straightforward manner using eq 1 or 2 . Moreover, the use of parameters based on density functional approach have also always proved to be inadequate in predicting bonding properties of transition-metal elements. ${ }^{6.8}$ We show in this

[^0](8) Garcia, A.; Cohen, M. L. Phys. Rev. 1993, B47, 4221.

Figure 1. Plot of $d_{\mathrm{M}-\mathrm{m}}(\mathrm{obsvd})$ vs the nonrelativistic Zunger-Cohen orbital radii, $r_{\mathrm{s}}(\bullet)$ or $r_{\text {spp }}\left(\left(r_{\mathrm{s}}+r_{\mathrm{p}}\right) / 2 ; \times\right)$ values obtained from the classical turning point of valence s and p electrons. The straight line corresponds to eq 2 in text.

Figure 2. Plot of observed interatomic distances at room temperature (ref 4) in transition-metal elements vs the Zunger-Cohen s-orbital radii, r_{s} (in \AA). $0,3 \mathrm{~d} ; \square, 4 \mathrm{~d}$; and $\Delta, 5 \mathrm{~d}$ elements. The line is meant as a guide to the eye for the values expected from eq 2 .

Figure 3. Plot of $d_{\mathrm{M}-\mathrm{M}}$ (obsvd) vs $d_{\mathrm{M}-\mathrm{M}}^{S}$ (calcd) using eq 4 with $C(S)$ $=1.19$ and $n(S)=0.08$ and eq 2 for obtaining $d_{M-M}(c a l c d)$. The symbols are the same as those given in Figure 2. The line is meant as a guide to the eye for $d_{\mathrm{M}-\mathrm{M}}(\mathrm{obsvd})=d_{\mathrm{M}-\mathrm{M}}^{\mathrm{S}}($ calcd $)$.

Communication that there may exist a simple universal function of the number of unpaired valence electrons, n, which in conjunction with eq 1 accounts for the variation of interatomic distances in transition-metal elements in the same manner as it explains multiple bond distances in the first row elements.

The observed interatomic distances in transition-metal elements ${ }^{4}$ are always smaller than those calculated using eq 1 , as shown in Figure 2. The elements with the maximum deviation in Figure 2 are those elements in which the d orbitals are close to being half-filled. ${ }^{9}$ The extent of reduction of the interatomic distance in transition-metal elements may be related to the number, n, of unpaired d electrons or the total spin $S(n / 2)$.

Thus, the calculated "spin"-dependent interatomic distance, $d_{\mathrm{M}-\mathrm{M}}^{S}(\mathrm{calcd})$, is obtained by dividing $d_{\mathrm{M}-\mathrm{M}}$ (calcd) (eq 2) by an universal spin-dependent factor, F_{S}, applicable to all transitionmetal elements ($S>0$). Thus we have

$$
\begin{equation*}
d_{\mathrm{M}-\mathrm{M}}(\text { calcd }) / d_{\mathrm{M}-\mathrm{M}}^{S}(\text { calcd })=F_{\mathrm{S}}=C(S)[S(S+1)]^{n(S)} \tag{4}
\end{equation*}
$$

The best fit ${ }^{10.11}$ (Figure 2) is obtained with $C(S)=1.19$ and $n(S)=0.080(\sim 1 / 4 \pi)$. The maximum deviations are observed with $\mathrm{Fe}, \mathrm{Co}, \mathrm{Pt}$, and Au (see Figure 2).

Equation 4 yields $F_{S}=1.16,1.26,1.32,1.37$, and 1.41 for n $=1,2,3,4$, and 5 , respectively. The ratios of the single-bond distance to the double-bond and triple-bond distances for carbon ${ }^{12}$ are 1.16 and 1.28 , respectively. The average values of the ratios of double-bond and triple-bond distances to the single-bond distances as tabulated by Pauling ${ }^{12}$ for the first row elements are 1.18 and 1.31 , respectively. The values of F_{S} for $n=1(\sim 1.16)$ and $n=2(\sim 1.26)$ obtained from eq 4 correspond closely, therefore, to the ratios of the single-bond to doublebond and triple-bond distances, respectively.

Equation 4 is applicable for rare-earth (4f) systems only when $S=1 / 2$, as in Y or Sc. It is not valid when S is calculated from the number of unpaired 4 f electrons, thereby emphasizing the requirement of unpaired outer or valence electrons for eq 4 to apply. F_{S}, and hence atomic sizes, may therefore change with the valence state. ${ }^{2}$ The influence of unpaired valence electrons is quite distinct from that of the bonding valence electrons, as seen from eq 4 , in which $d_{\mathrm{M}-\mathrm{M}}^{S}$ does not extrapolate to $d_{\mathrm{M}-\mathrm{M}}$ when $S=0$. There need be no restriction for using different values of F_{S} with the atoms constituting a chemical bond. Moreover, chemical experience, such as the existence of various bond orders for different bonds of the carbon atom in the carbonyl group of a ketone, requires F_{S} for an atom to be dependent on the environment in the bonding direction. With such an F_{S} or bond order flexibility, the prediction or interpretation of internuclear distances on the basis of eq 4 requires a judicious choice of F_{s}, especially in complicated structures.

An important issue in which bond lengths play a crucial role in the identification of the problem is the question of multiple metal-metal bonds in polynuclear complexes, ${ }^{13-16}$ some of which are listed in Table 1. The triple-bond or quadruple-bond distances calculated from eq 4 using the Zunger-Cohen r_{s} are very high (Table 1) and point to another prescription for obtaining intermetallic distances in such clusters. The bonding of a polynuclear clusters of metal, \mathbf{M}_{p}, bonded to ligands, L , with higher electronegativity may be written as $\left(\mathrm{M}_{\mathrm{p}}\right)^{+}-\mathrm{L}^{-}$. We have considered the intermetallic $\mathrm{M}-\mathrm{M}$ distance within this $\left(\mathrm{M}_{\mathrm{p}}\right)^{+}$cluster to be given simply as

[^1]Table 1. Observed and Calculated Metal-Metal Distances in Some Polynuclear Cluster Complexes ${ }^{a}$

compound	bond order ${ }^{b}$	$d_{\mathrm{M}-\mathrm{M}}$ obsvd	$\begin{gathered} d_{\mathrm{M}-\mathrm{M}}{ }^{c} \\ \text { calcd } \end{gathered}$	$\begin{gathered} d_{(\mathrm{M}-\mathrm{M})^{+d}} \\ \text { calcd } \end{gathered}$
[$\mathrm{Tc}_{2} \mathrm{Cl}_{8}$]	4	2.15	2.76	$2.14(+3, * 3)$
$\left[\mathrm{Mo}_{2} \mathrm{Cl}_{6}\right](\text { dppe })_{2}{ }^{e}$		2.76		2.76 (+1,*0)
$\left[\mathrm{Mo}_{6} \mathrm{Cl}_{8}{ }^{4+}\right.$		2.61		$2.64\left(+0,{ }^{*} 1\right)$
$\left[\mathrm{MO}_{2}\left(\mathrm{HPO}_{4}\right)_{4}\right]^{2-}$		2.22		$2.20(+3, * 3)$
$\left[\mathrm{Mo}_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]^{3-}$		2.16		$2.16(+4, * 3)$
$\left[\mathrm{Mo}_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]^{4-}$		2.11		$2.13(+3, * 4)$
$\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}$		2.09		$2.09(+4, * 4)$
$\mathrm{Mo}=\mathrm{Mo}^{\prime}$	3	2.208	2.95	$2.20(+3, * 3)$
MO ${ }^{4} \mathrm{Mof}^{\prime}$	4	2.106	2.82	$2.12(+4, * 4)$
Re = Re^{f}	3	2.27-2.28	2.89	$2.30(+2, * 2)$
$\mathrm{Re}^{4} \mathrm{Re}^{f}$	4	2.22	2.76	$2.20(+3, * 3)$
$\mathrm{Re}=\mathrm{Re}$	2	2.47	3.20	$2.50(+1, * 1)$
W ${ }^{4} W^{f}$	4	2.20		$2.22(+3, * 3)$
$\mathrm{Cr}-\mathrm{Cr}^{f}$		1.87		$1.90(+4, * 4)$
$\mathrm{Cr}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{4}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}$		2.54		$2.61(+0, * 0)$
$\mathrm{Pt}_{3}(\mathrm{CO})_{3}(\mu-\mathrm{CO})_{3}$		$2.65{ }^{\text {g }}$		$2.66\left(+0,{ }^{*} 0\right)$
$\mathrm{Pt}_{3}(\mathrm{CO})_{3}(\mu-\mathrm{CO})_{3}$		3.05^{h}		3.00 ($+0, * 0)$

${ }^{\text {a }}$ The observed distances for the compounds listed are taken from refs $13-16$. The r_{s} values for Mo (1.19 au), $\mathrm{Pt}(1.09 \mathrm{au})$, and $\mathrm{W}(1.20$ au) have been calculated from the interatomic distances in the elements using eq 4. For the others, the calculated Zunger-Cohen orbital radii have been used (ref 1). ${ }^{b}$ The bond order ($n+1=2 S+1$) is taken from that reported in the literature (refs 14 and 15). ${ }^{c}$ Calculated using eq 4 for the value of S corresponding to that given by the bond orders given in the second column. ${ }^{d}$ Calculated using eq 5; the figures in parentheses $\left(+n,{ }^{*} n^{\prime}\right)$ are the numbers of unpaired electrons used to calculate $F_{S,+}$ and $F_{S, c o v}$ in eq 5 so as to obtain the best agreement with observed values. ${ }^{e}$ dppe, $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2} .{ }^{f}$ The values given are the average values from examples given in refs 14 and $15 .{ }^{8}$ Intracluster $\mathrm{Pt}-\mathrm{Pt}$ distance. ${ }^{h}$ Intercluster $\mathrm{Pt}-\mathrm{Pt}$ distance.

$$
\begin{equation*}
d_{(\mathrm{M}-\mathrm{M})^{+}}=\mathrm{CR}^{+} / F_{s,+}+\mathrm{CR}_{\mathrm{cov}} / F_{S, \mathrm{cov}} \tag{5}
\end{equation*}
$$

with CR^{+}being given by eq 3 and $2 \mathrm{CR}_{\text {cov }}=d_{\mathrm{M}-\mathrm{M}}$ given by eq 3. $F_{S,+}$ and $F_{S, \text { cov }}$ are the values by which CR^{+}and $\mathrm{CR}_{\text {cov }}$ are reduced due to the unpaired valence electrons, n, on the corresponding atoms. The internuclear distances calculated using eq 5 are compared with the observed distances in Table 1. The values of F_{S} used correspond to the proposed bond orders ${ }^{13-16}$ reasonably well. When $\mathrm{M}=\mathrm{Mo}$, however, the average proposed $\mathrm{Mo}-\mathrm{Mo}$ triple-bond and quadruple-bond distances of 2.208 and $2.106 \AA$, respectively, fit better the quadruple ($S=3 / 2$) and quintuple ($S=2$) bond distances calculated using eq 5. On the other hand, the ratio of the average Mo-Mo triple-bond distance to the average quadruple-bond distance is 1.048 , which is almost exactly the expected ratio of $1.32 / 1.26=1.048$ obtained from eq 4 . It is interesting to note from Table 1 that the changes in the value of S account for the range of $\mathrm{Cr}-\mathrm{Cr}$ distances in polynuclear clusters of Cr , with the supershort Cr_{2} distance being given by $S=2$ and the longer $\mathrm{Cr}-\mathrm{Cr}$ distance by $S=0$.

Equation 5 seems to be relevant only for intracluster distances of polynuclear clusters. In one-dimensional solids ${ }^{13}$ such as the insulating $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Pt}-\mathrm{Pt}$ distance of $\sim 3.48 \AA$ is obtained from eq 2 for $S=0$, assuming $\mathrm{r}_{\mathrm{s}} \sim 1.09$ au for Pt (this value is used hereafter for all other Pt complexes), obtained by applying eq 2 to the $\mathrm{Pt}-\mathrm{Pt}$ distance of $2.77 \AA$ in Pt metal, with $S=1$. Complexes such as $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Br}_{0.3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{K}_{2}{ }^{-}$ $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ have $\mathrm{Pt}-\mathrm{Pt}$ distances close to $2.88 \AA$ and have higher conductivity than $\mathrm{K}_{1.75}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{Pt}-\mathrm{Pt}$ distance of $2.96 \AA$ compared to $\sim 3.00 \AA$ obtained from eq 2 for $S=1 / 2$). An interesting example ${ }^{13}$ is $\mathrm{Pt}_{3}(\mathrm{CO})(\mu-\mathrm{CO})_{3}$, in which the intracluster $\mathrm{Pt}-\mathrm{Pt}$ distance of $\sim 2.65 \AA$ is close to that ($2.66 \AA$) obtained from eq 5 with $S=0$, while the intercluster distance of $\sim 3.05 \AA$ is close to that $(\sim 3.00 \AA)$ obtained from eq 2 with $S=0$.
JA941455P

[^0]: (1) (a) Zunger, A.; Cohen, M. L. Phys. Rev. 1978, B18, 5449; (b) 1979, B20, 4082; (c) 1980, B22, 5839.
 (2) Shannon, R. D. Acta. Crystallogr. 1976, A32, 751.
 (3) Ganguly, P. J. Am. Chem. Soc. 1993, 115, 9287.
 (4) The interatomic distances have been obtained from The CRC Handbook of Chemistry and Physics, 61st ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, FL, 1981; p F-217.
 (5) The values of r_{s} after relativistic correction or other radii such as the nodal radii calculated by Zhang et al. (Zhang, S. B.; Cohen, M. L.; and Phillips, J. C. Phys. Rev. 1987, B36, 5861) do not give as good fits.
 (6) (a) Zhang, S. B.; Cohen, M. L.; Phillips, J. C. Phys. Rev. 1988, B38, 12085. (b) Zhang, S. B.; Cohen, M. L. Phys. Rev. 1989, B39, 1077.
 (7) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; Table 7-20, p 260. Lange's Handbook of Chemistry, 13th ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 1985; pp 3-121.

[^1]: (9) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; Chapter 11, see especially Figure 119. Such a deviation forms the basis of Pauling's discussions on metallic bonding.
 (10) The value of S has been obtained nominally from the number N of the row that the element occupies in the periodic table; for example, $n=$ 1 for Sc and $\mathrm{Cu}(N=$ IIIB and IB, respectively) or $n=4$ for Cr, Mo, W ($N=\mathrm{VIB}$) or Fe, Ru, Os ($\mathrm{N}=\mathrm{VIIIA}$), etc.
 (11) Another suitable function is $F_{S}=d_{\mathrm{M}-\mathrm{M}} / d_{\mathrm{M}-\mathrm{M}}^{S} \sim 1+(2 S+1) / C^{\prime}$. $(S)(C(S) \sim 12.6)$, which gives too short values of interatomic distances for high values of S.
 (12) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; Table 7-5, p 228.
 (13) See: Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley and Sons: New York, 1980; p 1080.
 (14) See: Cotton, F. A. Chem. Soc. Rev. 1975, 4, 27 and references therein.
 (15) See: Cotton, F. A.; Walton, R. A. Structure and Bonding; Springer Verlag: Berlin, 1985; Vol. 62, p 1.
 (16) See: Chisholm, M. H. Acc. Chem. Res. 1990, 23, 419.

